There was a whole thread on this and noone could be arsed back then.Jon Corby wrote:947, but even then there 9,017 selections which solve and only 4,226 which do not.Graeme Cole wrote:Which target is solvable by the fewest selections?
It's then small steps to the next worst, 941 (9045 solve, 4,198 don't), and similarly onto 967, 933 and 937 (TCap's other guess of 911 is #23 in the list.)
The first 'baddun' that isn't in the 900s is 853 at rank #13 (9453 solve, 3790 don't)
How many Numbers puzzles are there in total?

 Postapocalypse
 Posts: 7575
 Joined: Mon Jan 21, 2008 10:37 pm
Re: How many Numbers puzzles are there in total?

 Postapocalypse
 Posts: 7575
 Joined: Mon Jan 21, 2008 10:37 pm
Re: How many Numbers puzzles are there in total?
There's also some interesting stuff here. Apparently 100, 75, 50, 25, 8, 9 is the best 4large selection in terms of the most solvable targets. And 100, 2, 3, 5, 8, 9 is the best selection at solving consecutive targets up from 101 if there was no 999 limit. It can solve up to 1912.
 JimBentley
 Legend
 Posts: 2560
 Joined: Fri Jan 11, 2008 6:39 pm
 Location: Redcar, UK
 Contact:
Re: How many Numbers puzzles are there in total?
This is excellent work by the way Jon, and the more detail the better. Also can we have 'likes' back?Jon Corby wrote:Here is the breakdown by type, and how far away you can get:
Code: Select all
Zero away 1 away 2 away 3 away 4 away 5 away 6 away 7 away 8 away 9 away 10 away 11+ away 6S 1963726 (76.64%) 353472 65417 26954 15232 9859 7357 5780 4589 3945 3326 102493 1L 4966076 (95.11%) 220295 21730 5813 2527 1272 713 470 339 264 217 1676 2L 3192103 (96.23%) 12258 8487 1880 865 435 313 207 144 114 78 426 3L 693131 (91.79%) 53875 4577 1332 724 461 296 206 139 87 64 268 4L 43710 (88.40%) 4661 556 179 112 75 42 28 22 18 16 26

 Postapocalypse
 Posts: 7575
 Joined: Mon Jan 21, 2008 10:37 pm
Re: How many Numbers puzzles are there in total?
Yeah, I have to grudgingly admit he's doing some good work here.JimBentley wrote:This is excellent work by the way Jon, and the more detail the better. Also can we have 'likes' back?Jon Corby wrote:Here is the breakdown by type, and how far away you can get:
Code: Select all
Zero away 1 away 2 away 3 away 4 away 5 away 6 away 7 away 8 away 9 away 10 away 11+ away 6S 1963726 (76.64%) 353472 65417 26954 15232 9859 7357 5780 4589 3945 3326 102493 1L 4966076 (95.11%) 220295 21730 5813 2527 1272 713 470 339 264 217 1676 2L 3192103 (96.23%) 12258 8487 1880 865 435 313 207 144 114 78 426 3L 693131 (91.79%) 53875 4577 1332 724 461 296 206 139 87 64 268 4L 43710 (88.40%) 4661 556 179 112 75 42 28 22 18 16 26
 JimBentley
 Legend
 Posts: 2560
 Joined: Fri Jan 11, 2008 6:39 pm
 Location: Redcar, UK
 Contact:
Re: How many Numbers puzzles are there in total?
You two aren't going to have a fight at COLIN are you? I for one am hoping you're not, I think it might spoil the atmosphere a bit.Gavin Chipper wrote:Yeah, I have to grudgingly admit he's doing some good work here.
Re: How many Numbers puzzles are there in total?
I do need to add some "weighting" to each selection as well though, because I'm treating each one equally at the moment (which is right for some measures but not others).

 Acolyte
 Posts: 248
 Joined: Wed Sep 18, 2013 2:32 pm
Re: How many Numbers puzzles are there in total?
Which impossible numbers games by category are the furthest from being solvable?
I worded that terribly, but if I give 1 1 2 2 3 3 => 999 as the 6 small one, and presumably 25 1 1 2 2 3 => 999 as the 1 large one then you get the idea. Hopefully it gets more interesting with 2 large and above.
Thanks in advance.
I worded that terribly, but if I give 1 1 2 2 3 3 => 999 as the 6 small one, and presumably 25 1 1 2 2 3 => 999 as the 1 large one then you get the idea. Hopefully it gets more interesting with 2 large and above.
Thanks in advance.
Re: How many Numbers puzzles are there in total?
With 2 large the worst are 25 away:Fred Mumford wrote:Which impossible numbers games by category are the furthest from being solvable?
I worded that terribly, but if I give 1 1 2 2 3 3 => 999 as the 6 small one, and presumably 25 1 1 2 2 3 => 999 as the 1 large one then you get the idea. Hopefully it gets more interesting with 2 large and above.
Thanks in advance.
25,50,1,1,2,2 target 875
25,100,1,1,2,2 target 950
50,75,1,1,2,2 target 850
75,100,1,1,2,2 target 925
With 3 large the worst is 75 away:
50,75,100,1,1,2 target 975
With 4 large the worst is just 16 away:
25,50,75,100,1,1 target 866
Not sure if that was what you were hoping for in terms of being more interesting  the small numbers are fairly predictable in each case, but at least there's a bit of variation with the large ones.
Re: How many Numbers puzzles are there in total?
By the way, here is the correctly weighted distribution of games:
(NB, rounded to two decimal places, even where it says 0.00% there is still a value there, it's just very small! There are no proper zeroes in the grid.)
Code: Select all
0 away 1 away 2 away 3 away 4 away 5 away 6 away 7 away 8 away 9 away 10 away 11+ away
6S 83.87% 10.48% 1.69% 0.68% 0.38% 0.24% 0.18% 0.14% 0.11% 0.09% 0.07% 2.08%
1L 97.75% 2.04% 0.14% 0.03% 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%
2L 98.19% 1.69% 0.09% 0.02% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3L 94.73% 4.83% 0.27% 0.07% 0.04% 0.02% 0.01% 0.01% 0.01% 0.00% 0.00% 0.01%
4L 90.45% 8.23% 0.77% 0.24% 0.13% 0.07% 0.03% 0.02% 0.01% 0.01% 0.01% 0.02%
Re: How many Numbers puzzles are there in total?
Clue?JimBentley wrote:961 is also a significant number and I will give a prize of one new penny for the first person (who isn't Jon) to say why.
Re: How many Numbers puzzles are there in total?
If you have small numbers 6,7,8,9 and it's either a 2 large, or a 1 large with the 100, TEN POINTS ARE AVAILABLE.
Struggling for a methodical way to look for commonalities like this though, there's probably more interesting (i.e. less specific) ones. Any ideas?
Struggling for a methodical way to look for commonalities like this though, there's probably more interesting (i.e. less specific) ones. Any ideas?
 JimBentley
 Legend
 Posts: 2560
 Joined: Fri Jan 11, 2008 6:39 pm
 Location: Redcar, UK
 Contact:
Re: How many Numbers puzzles are there in total?
It's difficult to give a clue without giving it away. Actually, your figures are likely more accurate anyway so I might as well tell you what I think the answer is and ask you if it's right  I think it's the number with the "most complicated" solutions, if that makes sense? i.e. the target that  when you can get it spoton  requires the most numbers to solve, usually all six.Jon Corby wrote:Clue?JimBentley wrote:961 is also a significant number and I will give a prize of one new penny for the first person (who isn't Jon) to say why.
Re: How many Numbers puzzles are there in total?
Ah, I did wonder if it was anything along those lines; my data does not have any details about the solution, so I can neither confirm nor deny. My first run was writing out "the quickest solution" (defined as fewest steps, and lowest values of operands), but this was going to take about a month to run. By binning that I was able to take it down to about a day. I didn't really think there was THAT much worth in keeping the methods themselves, since there's nothing really setbased you can do with them, unless you were to keep EVERY different method I suppose, then you could look for commonalities. You're more likely to be curious about an individual game's method, which you can generate in a second anyway. A second for each of the near12m games is about three months though...JimBentley wrote:It's difficult to give a clue without giving it away. Actually, your figures are likely more accurate anyway so I might as well tell you what I think the answer is and ask you if it's right  I think it's the number with the "most complicated" solutions, if that makes sense? i.e. the target that  when you can get it spoton  requires the most numbers to solve, usually all six.Jon Corby wrote:Clue?JimBentley wrote:961 is also a significant number and I will give a prize of one new penny for the first person (who isn't Jon) to say why.

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
Jon, I think you should do a similar analysis on the solvability of numbers games with the "nasty" large numbers as used in a couple of special episodes (those larges are 12, 37, 62, 87). I've done that analysis in the past and there's something very obviously surprising about the results when compared with the standard larges...
Answer: Picking 3 large leads to an absurdly high percentage of solvable games
Answer: Picking 3 large leads to an absurdly high percentage of solvable games
Re: How many Numbers puzzles are there in total?
Since you asked so nicely, you're on! Running now, so hopefully should have some results tomorrow...Dave Ricesky wrote:Jon, I think you should do a similar analysis on the solvability of numbers games with the "nasty" large numbers as used in a couple of special episodes (those larges are 12, 37, 62, 87).

 Acolyte
 Posts: 248
 Joined: Wed Sep 18, 2013 2:32 pm
Re: How many Numbers puzzles are there in total?
Cheers Jon. The 4 large one is interesting (a relative term of course)  it shows once again that 4 large is not nearly as stifling as the average viewer might assume. Getting a double 1 on the other hand very much is.Jon Corby wrote:Not sure if that was what you were hoping for in terms of being more interesting  the small numbers are fairly predictable in each case, but at least there's a bit of variation with the large ones.
 Graeme Cole
 Series 65 Champion
 Posts: 1457
 Joined: Tue Jul 06, 2010 9:59 pm
Re: How many Numbers puzzles are there in total?
That's why they call it the madhouse.Fred Mumford wrote:Cheers Jon. The 4 large one is interesting (a relative term of course)  it shows once again that 4 large is not nearly as stifling as the average viewer might assume. Getting a double 1 on the other hand very much is.Jon Corby wrote:Not sure if that was what you were hoping for in terms of being more interesting  the small numbers are fairly predictable in each case, but at least there's a bit of variation with the large ones.

 Devotee
 Posts: 927
 Joined: Sat Jun 30, 2012 8:56 pm
 Location: Dadford, Buckinghamshire
Re: How many Numbers puzzles are there in total?
In "Who's going to tell Graeme they love him a bit" today, it's my turn <3Graeme Cole wrote:That's why they call it the madhouse.Fred Mumford wrote:Cheers Jon. The 4 large one is interesting (a relative term of course)  it shows once again that 4 large is not nearly as stifling as the average viewer might assume. Getting a double 1 on the other hand very much is.Jon Corby wrote:Not sure if that was what you were hoping for in terms of being more interesting  the small numbers are fairly predictable in each case, but at least there's a bit of variation with the large ones.
Possibly the first contestant to accelerate with a mic clipped...
Re: How many Numbers puzzles are there in total?
Cheers Dave for the suggestion, this looks like it might be pretty interesting.Dave Ricesky wrote:Jon, I think you should do a similar analysis on the solvability of numbers games with the "nasty" large numbers as used in a couple of special episodes (those larges are 12, 37, 62, 87).
Staggeringly, there is NO CHANGE WHATSOEVER in the figures for 6 small. They're all completely identical. I simply can't get my head around why this could be, but nonetheless it means we can ignore them for now.
I haven't delved below the surface yet, but I too am initially surprised how advantageous (in purely computational terms) the 'nasty' big numbers are. Initially I would've thought the lack of divisibility would be detrimental, but I guess I overestimated its usefulness versus (presumably) the fact that the numbers (overall) are smaller and therefore better for multiplying to (near) the targets. You can almost think of 12 as almost an honorary small number rather than a large, and I guess that having 12 as the 1 large is responsible for pulling the overall 1L figures down.
Here is the count of distinct games:
Code: Select all
0 away 1 away 2 away 3 away 4 away 5 away 6 away 7 away 8 away 9 away 10 away 11+ away
1L 4906599 (93.97%) 258757 27733 8926 4218 2439 1503 935 714 578 491 8499
2L 3257138 (98.19%) 54641 3531 885 353 184 133 90 69 53 40 193
3L 748401 (99.10%) 6178 397 103 49 12 5 4 2 2 2 5
4L 48944 (98.99%) 437 51 10 3 0 0 0 0 0 0 0
Code: Select all
Type 0 away 1 away 2 away 3 away 4 away 5 away 6 away 7 away 8 away 9 away 10 away 11+ away
1L 96.85% 2.74% 0.22% 0.07% 0.03% 0.02% 0.01% 0.01% 0.00% 0.00% 0.00% 0.05%
2L 99.22% 0.73% 0.03% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
3L 99.59% 0.38% 0.02% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
4L 99.55% 0.41% 0.03% 0.01% 0.00%       

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
Yep, that agrees with the rough memory I had from ~2 years ago when I did this myself. I don't remember 2 or 4 large being quite so similar to 3 large in terms of gettable targets, but my overall surprise at Nasty 3 large being THE most gettable numbers variant probably just dulled my memory of the others.
Thanks for the figures!
Thanks for the figures!
Re: How many Numbers puzzles are there in total?
I too am amazed by the Nasty 3L revelation! I guess, as Jon suggests, the smaller large numbers are more flexible. For starters multplying any two of 25, 50, 75 and 100 immediately catapults you way out of potential target range, where 12 x 37 = 444 or 12 x 62 = 744 are immediately usable. Experience and the stats suggest that high targets a good distance from a multiple of 25 are tough with 3 or 4 large, but I'd not have expected that a more rnmdom less interactive looking selection would yield better results.

 Acolyte
 Posts: 207
 Joined: Fri Sep 25, 2009 11:37 am
Re: How many Numbers puzzles are there in total?
25,50,75,100 are a very inefficient set of large numbers because their cofactors lead to a lot of duplication in achievable targets if you have 2+ large numbers. If you take this into account then 12,37,62,87 being more useful shouldn't be too big a surprise.

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
Jon, how long does your program take to solve all the numbers games? I've dug up my old code (and made a couple of tweaks) and it can chow through all the standard numbers games, including recording an optimal* solution to each one, in a matter of minutes. I'm happy to use it to answer any nagging questions people might have that haven't yet been answered.Jon Corby wrote:Since you asked so nicely, you're on! Running now, so hopefully should have some results tomorrow...
Currently, I'm taking a look at what the best numbers are for 4L  i.e. which set of four large numbers produces the largest volume of solvable games in 4L selections. So far, the best set is 11, 13, 18, 57, with a mere 8 games where the target can't be reached exactly out of a possible 49445. If I used a more structured / cleverer search, I might be able to improve on that figure...
*optimal here means "is the shortest solution to write down"
Great point, Matthew!Matthew Tassier wrote:25,50,75,100 are a very inefficient set of large numbers because their cofactors lead to a lot of duplication in achievable targets if you have 2+ large numbers. If you take this into account then 12,37,62,87 being more useful shouldn't be too big a surprise.
 Clive Brooker
 Devotee
 Posts: 500
 Joined: Wed Feb 11, 2009 7:37 pm
 Location: San Toy
Re: How many Numbers puzzles are there in total?
Here's one that you and/or Jon might like to think about. Every so often someone produces a solution which involves multiplying up to a very high number before dividing down again. Usually this turns out to be showboating either because the solution offered could've been sequenced differently or because there are other solutions which don't require the same gymnastics.Dave Ricesky wrote:I've dug up my old code (and made a couple of tweaks) and it can chow through all the standard numbers games, including recording an optimal* solution to each one, in a matter of minutes. I'm happy to use it to answer any nagging questions people might have that haven't yet been answered.
But sometimes these alternatives don't exist. What numbers solution requires the highest intermediate solution?
The question presupposes agreement on when an intermediate solution is required. Every solution is built up using a sequence of addition/subtraction and multiplication/division operations, and my thinking is that an intermediate solution is required when control transfers from one to the other. Something like that anyway. So if the target is 302 and you solve it with 100*75/25+2, you have one intermediate solution, 300. But if you do (100*75+50)/25, you have two, 7500 and 7550.
Whether a definition of intermediate solution along these lines leaves room for ambiguity I have no idea.
It would then be interesting to know what is the best anyone has managed to do on the show.
 Thomas Carey
 Devotee
 Posts: 882
 Joined: Sun Jan 09, 2011 4:17 pm
 Location: NorthWest of Bradford
 Contact:
Re: How many Numbers puzzles are there in total?
What about something like 100*75+66/25? 7500 is your intermediate, but...
signature
 Clive Brooker
 Devotee
 Posts: 500
 Joined: Wed Feb 11, 2009 7:37 pm
 Location: San Toy
Re: How many Numbers puzzles are there in total?
Any decent solver would regard that as equivalent to 100*75/25.Thomas Carey wrote:What about something like 100*75+66/25? 7500 is your intermediate, but...

 Acolyte
 Posts: 248
 Joined: Wed Sep 18, 2013 2:32 pm
Re: How many Numbers puzzles are there in total?
100 75 50 25 3 3 => 996 ?Clive Brooker wrote:What numbers solution requires the highest intermediate solution?

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?

Last edited by Dave Ricesky on Wed Jan 13, 2016 9:16 pm, edited 1 time in total.

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?

Last edited by Dave Ricesky on Wed Jan 13, 2016 9:16 pm, edited 1 time in total.

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
I'm afraid that's one question I can't answer without significantly slowing down my solver  some optimisations I've made to it mean that it discards quite a lot of potential solutions early on to remove duplication, and the result is that it might find a showboating solution and completely miss an easier alternative. The only guarantee I can make about the final solution is that it will always be the one involving the fewest starting numbers.Clive Brooker wrote:But sometimes these alternatives don't exist. What numbers solution requires the highest intermediate solution?
We probably have a winner.Fred Mumford wrote:100 75 50 25 3 3 => 996 ?
 JimBentley
 Legend
 Posts: 2560
 Joined: Fri Jan 11, 2008 6:39 pm
 Location: Redcar, UK
 Contact:
Re: How many Numbers puzzles are there in total?
Numbers: 100 75 50 25 3 3Dave Ricesky wrote:I'm afraid that's one question I can't answer without significantly slowing down my solver  some optimisations I've made to it mean that it discards quite a lot of potential solutions early on to remove duplication, and the result is that it might find a showboating solution and completely miss an easier alternative. The only guarantee I can make about the final solution is that it will always be the one involving the fewest starting numbers.Clive Brooker wrote:But sometimes these alternatives don't exist. What numbers solution requires the highest intermediate solution?
We probably have a winner.Fred Mumford wrote:100 75 50 25 3 3 => 996 ?
Target: 996
found solution:
50 + 3 = 53
53 * 25 = 1325
1325 + 3 = 1328
1328 * 75 = 99600
99600 / 100 = 996
number of operations attempted: 1685356
number of solutions: 1
There must be something better than that, surely?
 Clive Brooker
 Devotee
 Posts: 500
 Joined: Wed Feb 11, 2009 7:37 pm
 Location: San Toy
Re: How many Numbers puzzles are there in total?
I would argue that there is no need to evaluate 1328*75. An intermediate solution is only required when a sequence of addition and subtraction operations ends and a sequence of multiplication and division operations begins, and viceversa.JimBentley wrote:Numbers: 100 75 50 25 3 3Dave Ricesky wrote: We probably have a winner.
Target: 996
found solution:
50 + 3 = 53
53 * 25 = 1325
1325 + 3 = 1328
1328 * 75 = 99600
99600 / 100 = 996
number of operations attempted: 1685356
number of solutions: 1
There must be something better than that, surely?
Having got to 1328, all you need to demonstrate is that 1328*75 is a multiple of 100, equivalent to showing that 1328 divides by 4.

 Postapocalypse
 Posts: 7575
 Joined: Mon Jan 21, 2008 10:37 pm
Re: How many Numbers puzzles are there in total?
This this discussion here too about intermediate targets.
 Thomas Carey
 Devotee
 Posts: 882
 Joined: Sun Jan 09, 2011 4:17 pm
 Location: NorthWest of Bradford
 Contact:
Re: How many Numbers puzzles are there in total?
That's mightily impressive  is there any intelligence to it? I originally wrote a "crude" solver which just bruteforced every combination of sums for a VB Countdown game I wrote years ago, and didn't bother to finesse it much because it easily solved within a second or two, so there was no value in improving it. I converted the essence of it to c# (purely because that's what I program at work) to do this, but made a few tweaks to speed it up (notably 'caring' more about the numbers themselves  don't repeat sums with the same number if there's more than one of them, don't divide by 1, don't subtract if the larger number is double the smaller, don't multiply by 1.... think that's it) and was pleased enough to speed it up so that it did the circa 12m in about 14 hours! How on earth do you get it so quick?Dave Ricesky wrote:Jon, how long does your program take to solve all the numbers games? I've dug up my old code (and made a couple of tweaks) and it can chow through all the standard numbers games, including recording an optimal* solution to each one, in a matter of minutes.
Oh, another thing I suppose is that I pretty much "forget" each game and treat each one anew*, so I did wonder if there could be any value from "learning" from solves already done. But my hunch there was that the overheads if doing that lookup would outweigh the benefits.
* the one exception being I take a selection and solve the targets in ascending order; if the solve for target n is m where m > n, I don't need to do any more solves until n > m. This probably would have worked better in descending order actually, especially for those shit 6 smalls where you can only reach small numbers anyway... but again, it wouldn't reduce it to minutes instead of hours!!
Re: How many Numbers puzzles are there in total?
The point with this one though Clive is that you can only use integers on the show (and on Apterous), so it is necessary to multiply by 75 before dividing by 100. According to Countdown rules it's unsolvable without going to 99,600. Essentially the whole thing is a variant on the 937.5 trick, i.e. (25 x 50 x 75) / 100, with some messing about to adjust the final outcome.Clive Brooker wrote:I would argue that there is no need to evaluate 1328*75. An intermediate solution is only required when a sequence of addition and subtraction operations ends and a sequence of multiplication and division operations begins, and viceversa.JimBentley wrote:Numbers: 100 75 50 25 3 3Dave Ricesky wrote: We probably have a winner.
Target: 996
found solution:
50 + 3 = 53
53 * 25 = 1325
1325 + 3 = 1328
1328 * 75 = 99600
99600 / 100 = 996
number of operations attempted: 1685356
number of solutions: 1
There must be something better than that, surely?
Having got to 1328, all you need to demonstrate is that 1328*75 is a multiple of 100, equivalent to showing that 1328 divides by 4.

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
It looks like the main difference is that I don't care about the target at all. To generate my stats, I take a selection of starting numbers and generate all the values you can make from that selection  once the program has generated all the possible results from the starting numbers, I just go through all the possible targets, and for each of them, see what the closest thing I generated was. Speedup there of a factor of approximately 900...Jon Corby wrote:That's mightily impressive  is there any intelligence to it? I originally wrote a "crude" solver which just bruteforced every combination of sums for a VB Countdown game I wrote years ago, and didn't bother to finesse it much because it easily solved within a second or two, so there was no value in improving it. I converted the essence of it to c# (purely because that's what I program at work) to do this, but made a few tweaks to speed it up (notably 'caring' more about the numbers themselves  don't repeat sums with the same number if there's more than one of them, don't divide by 1, don't subtract if the larger number is double the smaller, don't multiply by 1.... think that's it) and was pleased enough to speed it up so that it did the circa 12m in about 14 hours! How on earth do you get it so quick?Dave Ricesky wrote:Jon, how long does your program take to solve all the numbers games? I've dug up my old code (and made a couple of tweaks) and it can chow through all the standard numbers games, including recording an optimal* solution to each one, in a matter of minutes.
Oh, another thing I suppose is that I pretty much "forget" each game and treat each one anew*, so I did wonder if there could be any value from "learning" from solves already done. But my hunch there was that the overheads if doing that lookup would outweigh the benefits.
* the one exception being I take a selection and solve the targets in ascending order; if the solve for target n is m where m > n, I don't need to do any more solves until n > m. This probably would have worked better in descending order actually, especially for those shit 6 smalls where you can only reach small numbers anyway... but again, it wouldn't reduce it to minutes instead of hours!!
 Clive Brooker
 Devotee
 Posts: 500
 Joined: Wed Feb 11, 2009 7:37 pm
 Location: San Toy
Re: How many Numbers puzzles are there in total?
You don't need to evaluate 1328*75 to prove it's an integer because it automatically is.sean d wrote:The point with this one though Clive is that you can only use integers on the show (and on Apterous), so it is necessary to multiply by 75 before dividing by 100. According to Countdown rules it's unsolvable without going to 99,600. Essentially the whole thing is a variant on the 937.5 trick, i.e. (25 x 50 x 75) / 100, with some messing about to adjust the final outcome.
If I'd been given the sum 1328*75/100 to work out at school, I would've expected a rap on the knuckles (metaphorical or otherwise) if I'd begun by multiplying 1328 by 75. I can't remember whether the Apterous interface requires you to add/subtract/multiply/divide one number at a time, but certainly on the show you could say ..... = 1328, times 75 divided by 100, and Rachel would be very happy with that.
Apologies for leading this offtopic. I originally responded to Dave's invitation to ask any numbers game questions we might have.
 JimBentley
 Legend
 Posts: 2560
 Joined: Fri Jan 11, 2008 6:39 pm
 Location: Redcar, UK
 Contact:
Re: How many Numbers puzzles are there in total?
I'm sure she would, as it follows the rules (going to 99,600 and coming back down, even if Rachel decided to omit writing that step down). Now if you said ... = 1328, times (75/100) (or ¾) then she should disallow it, as only integers can be used in calculations, so far as I know.Clive Brooker wrote:certainly on the show you could say ..... = 1328, times 75 divided by 100, and Rachel would be very happy with that.
Re: How many Numbers puzzles are there in total?
If you're in true showboating mode you can go to 750,000 and back to a solution, incidentally.
Re: How many Numbers puzzles are there in total?
Christ, do I feel stupid now. I'm repeating the exact same calculations hundreds of times over.,,Dave Ricesky wrote:It looks like the main difference is that I don't care about the target at all. To generate my stats, I take a selection of starting numbers and generate all the values you can make from that selection  once the program has generated all the possible results from the starting numbers, I just go through all the possible targets, and for each of them, see what the closest thing I generated was. Speedup there of a factor of approximately 900...
 Charlie Reams
 Site Admin
 Posts: 9359
 Joined: Fri Jan 11, 2008 2:33 pm
 Location: Cambridge
 Contact:
Re: How many Numbers puzzles are there in total?
Great topic, enjoyed reading all this!
Harder question: if one were designing a new variant, which four large numbers (in the range 11100) make the game hardest (i.e. fewest games solvable) and which easiest (i.e. most games solvable)?
Harder question: if one were designing a new variant, which four large numbers (in the range 11100) make the game hardest (i.e. fewest games solvable) and which easiest (i.e. most games solvable)?

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
Charlie, I'll be able to answer that question restricted only to 4L picks in the next few days. Over all picks 6S to 4L, it seems to me to be intractable to get a complete answer at the moment.

 Postapocalypse
 Posts: 7575
 Joined: Mon Jan 21, 2008 10:37 pm
Re: How many Numbers puzzles are there in total?
For the hardest, it might be something stupid like 11, 12, 13, 14 or even 100, 99, 98, 97.
 Clive Brooker
 Devotee
 Posts: 500
 Joined: Wed Feb 11, 2009 7:37 pm
 Location: San Toy
Re: How many Numbers puzzles are there in total?
If you want the hardest possible variant, what about choosing six from 1100 with equal probability? You'd want two of each in the pack I would imagine. Or perhaps this already exists.
 Charlie Reams
 Site Admin
 Posts: 9359
 Joined: Fri Jan 11, 2008 2:33 pm
 Location: Cambridge
 Contact:
Re: How many Numbers puzzles are there in total?
Yeah, I think 97100 is a good shout.Gavin Chipper wrote:For the hardest, it might be something stupid like 11, 12, 13, 14 or even 100, 99, 98, 97.
I'm okay with an imperfect answer, I'm sure we can get somewhere with a bit of stochastic hill climbing or some such. (I haven't tried this myself yet but it would make an interesting contest I reckon.)Dave Ricesky wrote: Charlie, I'll be able to answer that question restricted only to 4L picks in the next few days. Over all picks 6S to 4L, it seems to me to be intractable to get a complete answer at the moment.
Re: How many Numbers puzzles are there in total?
I'll get the dictionary.

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
Hill climbing methods don't seem directly applicable here, since everything in sight is discrete. I'll have a think about other way of approaching it, because you're right, it is interesting to see how well we can do with imperfect methods!Charlie Reams wrote:I'm okay with an imperfect answer, I'm sure we can get somewhere with a bit of stochastic hill climbing or some such. (I haven't tried this myself yet but it would make an interesting contest I reckon.)
 Charlie Reams
 Site Admin
 Posts: 9359
 Joined: Fri Jan 11, 2008 2:33 pm
 Location: Cambridge
 Contact:
Re: How many Numbers puzzles are there in total?
Hill climbing still works in a discrete space doesn't it? You can't do gradient descent but you can still have neighbours and a quality metric and that's really all you need. I'm not convinced this will work all that well because changing one number by even a small amount could have a huge effect on the available solutions, but maybe it's somewhere to start.Dave Ricesky wrote:Hill climbing methods don't seem directly applicable here, since everything in sight is discrete. I'll have a think about other way of approaching it, because you're right, it is interesting to see how well we can do with imperfect methods!Charlie Reams wrote:I'm okay with an imperfect answer, I'm sure we can get somewhere with a bit of stochastic hill climbing or some such. (I haven't tried this myself yet but it would make an interesting contest I reckon.)

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
You're right, of course. I meant something more along the lines of "horribly discontinuous" (as far as that makes sense in a discrete space) rather than "discrete"  things such as the spread of prime factors appearing in the page numbers (so that we get a wide range of possible multiples of them) are likely to be more important than roughly what the numbers are equal to.Charlie Reams wrote:Hill climbing still works in a discrete space doesn't it? You can't do gradient descent but you can still have neighbours and a quality metric and that's really all you need. I'm not convinced this will work all that well because changing one number by even a small amount could have a huge effect on the available solutions, but maybe it's somewhere to start.Dave Ricesky wrote:Hill climbing methods don't seem directly applicable here, since everything in sight is discrete. I'll have a think about other way of approaching it, because you're right, it is interesting to see how well we can do with imperfect methods!Charlie Reams wrote:I'm okay with an imperfect answer, I'm sure we can get somewhere with a bit of stochastic hill climbing or some such. (I haven't tried this myself yet but it would make an interesting contest I reckon.)
Then again, I'm tempted to try hill climbing or some sort of genetic algorithm just to see what kinds of results we get. It's not the worst starting point...
 JimBentley
 Legend
 Posts: 2560
 Joined: Fri Jan 11, 2008 6:39 pm
 Location: Redcar, UK
 Contact:
Re: How many Numbers puzzles are there in total?
I for one hope that this problem with prove soluble through the use of the backward Kolmogorov equation and Ehrenhaft games, possibly (or not) incorporating the use of Markov chains*.Jon Corby wrote:I'll get the dictionary.
* I have absolutely no idea what I'm on about

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
Changed my mind. I can answer the whole thing within the next week, probably.Dave Ricesky wrote:Charlie, I'll be able to answer that question restricted only to 4L picks in the next few days. Over all picks 6S to 4L, it seems to me to be intractable to get a complete answer at the moment.
Re: How many Numbers puzzles are there in total?
I think this is at least the second time I've tried this when somebody has used the word stochastic. Maybe one day...JimBentley wrote:I for one hope that this problem with prove soluble through the use of the backward Kolmogorov equation and Ehrenhaft games, possibly (or not) incorporating the use of Markov chains*.Jon Corby wrote:I'll get the dictionary.
* I have absolutely no idea what I'm on about

 Postapocalypse
 Posts: 7575
 Joined: Mon Jan 21, 2008 10:37 pm
Re: How many Numbers puzzles are there in total?
But maybe not. It's unpredictable.Jon Corby wrote:I think this is at least the second time I've tried this when somebody has used the word stochastic. Maybe one day...JimBentley wrote:I for one hope that this problem with prove soluble through the use of the backward Kolmogorov equation and Ehrenhaft games, possibly (or not) incorporating the use of Markov chains*.Jon Corby wrote:I'll get the dictionary.
* I have absolutely no idea what I'm on about
 JimBentley
 Legend
 Posts: 2560
 Joined: Fri Jan 11, 2008 6:39 pm
 Location: Redcar, UK
 Contact:
Re: How many Numbers puzzles are there in total?
Have you read "The Stochastic Man" as well, then?Jon Corby wrote:I think this is at least the second time I've tried this when somebody has used the word stochastic. Maybe one day...JimBentley wrote:I for one hope that this problem with prove soluble through the use of the backward Kolmogorov equation and Ehrenhaft games, possibly (or not) incorporating the use of Markov chains*.Jon Corby wrote:I'll get the dictionary.
* I have absolutely no idea what I'm on about
 Graeme Cole
 Series 65 Champion
 Posts: 1457
 Joined: Tue Jul 06, 2010 9:59 pm
Re: How many Numbers puzzles are there in total?
Are you referencing that Simpsons episode set in the future?Jon Corby wrote:I think this is at least the second time I've tried this when somebody has used the word stochastic. Maybe one day...JimBentley wrote:I for one hope that this problem with prove soluble through the use of the backward Kolmogorov equation and Ehrenhaft games, possibly (or not) incorporating the use of Markov chains*.Jon Corby wrote:I'll get the dictionary.
* I have absolutely no idea what I'm on about
Re: How many Numbers puzzles are there in total?
You'll see when you get there.Graeme Cole wrote:Are you referencing that Simpsons episode set in the future?
One of the best episodes fo sho.

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
Just an update on Charlie's question  I've got full statistics for how many 0,1,2 or 3 large games are gettable with each possible set of large numbers. I was expecting to be completely done on the 4L by now as well, but my program hit a snag after I kicked it off and I didn't notice until now. For certain choices of large numbers, you can reach values larger than 2^31, causing overflow and other nasty things to happen to my program.
Looks like it got about 50% done with the 4L stuff before overflow became a problem. Rewritten using 64 bit integers and rerunning
Looks like it got about 50% done with the 4L stuff before overflow became a problem. Rewritten using 64 bit integers and rerunning
 Ian Volante
 Postmaster General
 Posts: 3202
 Joined: Wed Sep 03, 2008 8:15 pm
 Location: Edinburgh
 Contact:
Re: How many Numbers puzzles are there in total?
Really? How, given that 25*50*75*100*10*10 is under 1x10^9 and 2^31 is >2x10^9? Some intermediate factoring steps?Dave Ricesky wrote:you can reach values larger than 2^31
meles meles meles meles meles meles meles meles meles meles meles meles meles meles meles meles

 Newbie
 Posts: 26
 Joined: Fri Jan 08, 2016 4:34 pm
Re: How many Numbers puzzles are there in total?
Charlie's question was about using different sets of large numbers  and 100*99*98*97*10*10 is way too big, for example.Ian Volante wrote:Really? How, given that 25*50*75*100*10*10 is under 1x10^9 and 2^31 is >2x10^9? Some intermediate factoring steps?Dave Ricesky wrote:you can reach values larger than 2^31
Who is online
Users browsing this forum: No registered users and 3 guests